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a b s t r a c t

Based on the reduced SVM, we propose a multi-view algorithm, two-teachers–one-student, for semi-
supervised learning. With RSVM, different from typical multi-view methods, reduced sets suggest
different views in the represented kernel feature space rather than in the input space. No label information
is necessary when we select reduced sets, and this makes applying RSVM to SSL possible. Our algorithm
blends the concepts of co-training and consensus training. Through co-training, the classifiers generated
by two views can ‘‘teach’’ the third classifier from the remaining view to learn, and this process is
performed for each choice of teachers–student combination. By consensus training, predictions from
more than one view can give us higher confidence for labeling unlabeled data. The results show that the
proposed 2T1S achieves high cross-validation accuracy, even compared to the training with all the label
information available.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Semi-supervised learning (SSL) has been one of the most active
areas of the learning community in recent years. Beyond what
the supervised learning can offer, many real applications need
to deal with both labeled and unlabeled data simultaneously.1
Usually, the amount of labeled data is insufficient and obtaining
it is expensive. In contrast, unlabeled data is abundant and easy to
collect. For example, we may need to categorize a number of web
documents, but only a few of them may be correctly labeled. In
another example, determining the functions of biological strings
is expensive, and only a small portion of them have been studied
(labeled) to date. SSL can help researchers deal with these kinds
of problems because it takes advantage of knowing two kinds of
data; (1) it uses labeled data to identify the decision boundary
between data with different labels; and (2) it uses unlabeled data
to determine the data’s density, i.e., the datametric.

Among the various SSL algorithms that have been proposed,
the multi-view approach is one of the most widely used. It splits
data attributes into several attribute subsets and each subset
of attributes is called a view. Combining the information got
from each view will improve the performance on the supervised
learning task. In the co-training algorithm (Blum &Mitchell, 1998),
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data set and several fresh data without the class information for prediction, which
can be considered as an SSL problem where a transductive learning method can be
the solution.

classifiers of different views learn about the decision boundaries
from each other. Based on this concept, a number of variants
have been developed, e.g., the tri-training algorithm (Zhou & Li,
2005). On the other hand, the classifiers of different views can
be combined to form an ensemble classifier with a high level of
confidence. We call this approach consensus training.

In this paper, we propose a two-teachers-one-student (2T1S)
method for SSL. Themethod is amulti-viewapproachwhich blends
the concepts of co-training and consensus training. Based on the
reduced support vector machine (RSVM) (Lee & Huang, 2007; Lee
& Mangasarian, 2001a), different from other existing approaches,
ourmethod selectsmulti-view in the represented kernel feature space
rather than in the input space. In the feature space, we build a
classifier according to each different views, with limited labeled
data set. Then, based on two of the three classifiers (the teachers),
some unlabeled data are marked if the teachers form a consensus
answer, and those data are considered as the newly acquired
labeled set for training the remaining classifier (the student). We
apply the above ‘‘teaching’’ work to all classifier combinations,
namely, three choices for the case of two teachers and one student.
Ideally, most data points are successfully and correctly labeled as if
we have additional labeled data for training in the next run. Clearly,
ifwedonot consider the time cost, the combination of teachers and
students can be generalized to the set of more than three views.
The whole process is run iteratively and alternately until some
stopping criteria are satisfied.

The proposed method is based on RSVM (Lee & Huang, 2007;
Lee & Mangasarian, 2001a). In supervised learning, the RSVM
is proposed to overcome some major difficulties of the typical
support vectormachines (SVMs) that confront large data problems
due to dealing with a fully dense nonlinear kernel matrix. RSVM
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replaces the full kernel matrix with a smaller rectangular kernel
matrix. This rectangular kernelmatrix is a low-rank approximation
to the full kernel matrix and is generated by a uniform random
subset, named reduced set. Conceptually, choosing reduced sets
means choosing partial attribute sets (views) in the represented
kernel feature space.2 Therefore, our approachwill not be restricted
by the number of data attributes. That is, the proposed multi-view
method may deal with a data set even it consists of only a few
attributes.

To make our method to have better prediction result, the
selected reduced sets (views) had better not ‘‘too similar’’ to
each other. Traditionally, given the class information, researchers
assume the conditional independence between different views
(Zhu, 2005a). In the language of generative modeling, they assume
that different views are generated independently given the class
label. Our approach differs from thosemethods such as co-training
algorithms in that we choose views that are not linearly dependent
on each other. Working on the RSVM framework, the reduced
set is more representative if there is a high degree of dissimilarity
among the data points in the set. We use the IRSVM (Lee, Lo, &
Huang, 2003), which is a kind of RSVM algorithm, to select the
representative reduced sets from the entire data set (both labeled
and unlabeled data) as different views. We need to emphasize that
label information is not required in the selection process of the reduced
set. That makes RSVM perfect for the SSL problems which largely
need the help from unlabeled data.

Experiments show that our method’s performance is superior
to that of other SSL methods. The experiments include comparison
of training and prediction using only a limited labeled set and the
full labeled set; and comparison of ourmethod’s performancewith
that of other methods. We also use some synthesized data sets to
illustrate the effectiveness of our approach on a set with particular
properties. Before discussing our method in detail, we introduce
the notations used in this work.
Notations and problem setting

By convention, we let v denote a column vector and v′ denote a
row vector. For an SSL problem, we consider an input data set D of
size m, which consists of ℓ labeled points and u unlabeled points.
The labeled part is the set

DL := {(x1, y1), . . . , (xi, yi), . . . , (xℓ, yℓ)} ⊆ X× R,

where X ⊆ Rn is in the original input space and each pair (xi, yi)
is an observation xi = (xi1, x

i
2, . . . , x

i
n) ∈ X with its response or

class label yi. The unlabeled part is the set

DU := {xℓ+1, . . . , x(ℓ+u)=m
} ⊆ X.

In most cases, we are interested in the SSL problem when ℓ≪ u.
Let A ∈ Rm×n be the datamatrix of input attributes; and let each

row of A, denoted by Ai, represent the observation xi. A reduced
set is denoted by Ã ∈ Rm̃×n, where m̃ represents the number of
reduced points in Ã. For A ∈ Rm×n and B ∈ Rn×l, the kernel
K(A, B) maps Rm×n

× Rn×l into Rm×l. In particular, if x and y are
column vectors in Rn, then, K(x′, y) is a real number, K(A, x) is
a column vector in Rm, and K(A, A) is an m × m matrix. For the
labeled set, Y = (y1, . . . , yℓ)

′
∈ {−1, 1}ℓ is the column vector of

the corresponding responses in the case of a binary classification
problem. The whole process of our method, 2T1S, works on a
represented kernel feature space (functional space) FB , which is
spanned by the full data bases B = {k(·, Ai)}

m
i=1. The original input

space X is mapped into FB via the feature map ΦB : X ⊆ Rn
→

FB ⊆ Rm given by

x → ΦB(x) := (k(x, A1), k(x, A2), . . . , k(x, Am)),

2 One reduced set can decide one view, or be separated into several different
views, to be discussed later.

where the value of k(x, Ai), i = 1, 2, . . . ,m represents the sim-
ilarity between the data points x and xi. A view V is defined as a
subset of data points, that is

V = {Ã1, Ã2, . . . , Ãm̃},

which is used to select a subset of bases B̃ = {k(·, Ã1), k(·, Ã2), . . . ,

k(·, Ãm̃)} from the full data bases B = {k(·, Aj)}
m
j=1 to build a sepa-

rating surface prior to training.
In this work, we evaluate the proposedmodel by twomeasures,

the prediction accuracy on unlabeled data called training set
accuracy, and the prediction accuracy on fresh unseen data called
test set accuracy.

The remainder of the paper is organized as follows. In Section 2,
we review related works on SSL, and compare our approach with
other SSL models. In Section 3, we introduce the framework of our
method, including RSVM and the proposed 2T1S algorithm. We
also explain why our method can solve SSL problems effectively.
Section 4 describes the numerical experiments and details the
results. Section 5 contains some concluding remarks.

2. Previous work

SSL takes advantage of both labeled and unlabeled data to
improve prediction performance. The technique has been widely
used in a number of applications. For instance, Dong and Bhanu
(2005) proposed a new active concept learning algorithm that,
combines SSL with a model selection method for image retrieval.
Other applications in text mining, bioinformatics, and computer
vision are presented in Chapelle, Schölkopf, and Zien (2006)
and Zhu (2005a). According to conventional categorization, SSL
approaches can be divided into four categories (Chapelle et al.,
2006; Zhu, 2005a): low-density separation methods, graph-based
methods, methods for changing the representation, and co-training
methods. Low-density separation methods try to find the decision
boundary in the low-density area of data. The transductive
support vectormachine (TSVM)method (Bennett & Demiriz, 1999)
belongs to this category. When the number of labeled points is
small compared to the number of unlabeled points and the data
points are distributed in clusters, TSVM performs better than
SVMs because it utilizes the additional unlabeled data. Although
high computational complexity of TSVM is a major drawback,
some methods have been proposed to deal with large data sets
(Collobert, Sinz, Weston, & Bottou, 2006).

Graph-based methods use a graph to describe a data set. Each
node in a graph represents a data point and an edge represents
the relationship between a pair of data points. Then, a graph cut
algorithm is implemented to find the decision boundary (Blum &
Chawla, 2001). Theoretically, finding a cut can be formulated by
a soft version, which minimizes an energy function comprised of
the cost on labeled data and a regularization term (on all data)
(Kolmogorov & Zabin, 2004). An overview of graph-basedmethods
and their applications is provided in Zhu (2005b). One limitation
of most typical graph-based methods is that they have only
transductive ability instead of inductive ability, i.e., they only focus
on labeling unlabeled data. Without global function, the labeling
of new unseen data must be performed by another supervised
mechanism. To deal with this problem, some approaches such as
(Belkin, Niyogi, & Sindhwani, 2006; Zhao, 2006) were proposed.
Another problem is that the traditional graph-based methods is
usually sensitive to outliers. Wang and Zhang (2007) proposed a
robust self-tuning graph-based SSL method, named (RS3L), which
is capable of dealing with outliers.

Methods that change representation are based on the distribu-
tion of the input attributes of both labeled andunlabeled data. They
try to find an appropriate metric to describe the relationships be-
tween data points, and use that metric to find a representation of
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all the data in a new space. The class information is then plugged in
the newspace to determine the decision boundary. Isomap (Tenen-
baum, de Silva, & Langford, 2000), which belongs to the category of
manifold learning, is a candidate to find such a metric. The metric
in this case is defined by the geodesic distance between each pair
of data points. Principle Component Analysis is another example,
which finds the data representation in a low-dimensional space to
be with the lowest reconstruction error (Alpaydin, 2004; Oliveira,
Cozman, & Cohen, 2005). In principle, given a representation in the
low-dimensional space, any supervised learning method, such as
SVM, can be used to find the labels for both unlabeled data and un-
seen data.

Finally, the co-training algorithm (Blum&Mitchell, 1998) splits
data attributes into several subsets. It is assumed that the attribute
subsets are conditionally independent, given the label information.
Each subset plays a view and is sufficient to learn a classifier. We
can therefore use the prediction from one view to help other views
learn the label information of unlabeled data. Ourmethod is closely
related to the co-training approach. However, in our framework,
a reduced set represents a view in the represented kernel feature
space. This is one of the major differences between our approach
and other co-training methods. Another difference is that, instead
of assuming conditional independence between different views,
we assume that views are linearly independent of each other. We
also study different choices of views in order to select the best co-
training combinations, which we discuss later in the paper.

Various methods developed recently are inspired by the
co-training scheme. Abdel Hady, Schwenker, and Palm (2010)
combined a tree-structured approach and the co-training method
to deal with multi-class problems. The tri-training algorithm
proposed by Zhou and Li (2005) also belongs to the co-training
methods. The algorithm starts by using different training sets to
build three classifiers, which are considered as distinct views. Then
they select training sets from the original labeled set (the unlabeled
part is not included) via bootstrap sampling. Each classifier is
iteratively regenerated by the updated training set, which consists
of the original labeled set and the newly estimated labeled points
derived by the other two classifiers. The final refined classifiers
predict the labels of the test data by a majority voting mechanism.

Many SSL methods assume that class information is a hidden
or latent variable, and try to find such information in unlabeled
data; e.g., an SSL approach for probabilistic RBF network was
proposed by Constantinopoulos and Likas (2008). Following this
interpretation, we can regard our approach as an EM or co-EM
like procedure (Dempster, Laird, & Rubin, 1977), whichmeans that
we alternately use one part of data, with some label information
to build a classifier and to label the unlabeled data on another
part, then we can use the estimated labeled data to retrain new
classifiers in the next run. We need to emphasize that when
we build the classifier based on one part of data, we use both
labeled and unlabeled data. That differs from other EM or co-EM
procedures, which use only the labeled data to build classifiers.
Thanks to the formulation of RSVM, the label information is not
necessary whenwe compile a reduced set. Hence wemay use both
labeled and unlabeled data to generate the reduced set, and use
labeled data points to test if the generated classifier fits into our
constraints.We explain the framework in detail in the next section.

3. 2T1S approach for SSL

Our method is built on an alternate labeling and training
procedure. Given the initial labeled data, we try to label the
remaining unlabeled data and use both of labeled and the guessed
labeled data for training in the next run. Being a multi-view

approach, ourmethod is built on an RSVM, where each reduced set
serves as a view in the represented kernel feature space for SSL.3

3.1. RSVM and reduced sets for multi-view learning

For supervised learning problems, the SVM is one of the most
promising algorithms. Taking advantage of the so-called kernel
trick, the nonlinear SVM classifier is formulated as follows:

f (x) =
m−
j=1

ujk(x, xj)+ b, (1)

where k(x, xj) is a kernel function that represents the inner
product of the images of x and xj in the feature space under a
certain nonlinear mapping that we do not need to know explicitly.
For convenience, we use the terms ‘‘kernel function’’ and ‘‘basis
function’’ interchangeably in this paper. A kernel matrix K(A, A)
is defined as K(A, A)ij = k(Ai, Aj), which records all the pairwise
inner products (similarities) of instances in the represented kernel
feature space. The nonlinear SVM classifier is a linear combination
of the basis functions, {1} ∪ {k(·, Aj)}

m
j=1. For the linear SVM, the

kernel function is defined as k(x, z) = x′z and K(A, A) = AA′. In
this paper, we use the radial basis function (RBF) kernel, defined as

k(x, z) = e−µ‖x−z‖22 , (2)

where µ is the width parameter. A kernel with larger value of
µ tends to fit the training data better; however, it may lead to
overfitting. The coefficients uj and b in Eq. (1) are determined
by solving a quadratic programming problem (Burges, 1998;
Vapnik, 1995) or an unconstrained minimization problem (Lee &
Mangasarian, 2001b).

Solving the problems with large amounts of data is computa-
tionally difficult because it is necessary to deal with a fully dense
nonlinear kernel matrix in the optimization problem. To resolve
the difficulty, some authors have proposed applying low-rank ap-
proximation to the full kernel matrix (Smola & Schölkopf, 2000;
Williams & Seeger, 2000). As an alternative, the reduced support
vector machine (RSVM) was proposed in Lee and Mangasarian
(2001a). RSVM’s operations can be divided into two steps. First, it
randomly selects a small subset of bases B̃ = {k(·, Ã1), k(·, Ã2),

. . . , k(·, Ãm̃)} from the full4 data bases B = {k(·, Aj)}
m
j=1 to build a

separating surface prior to training. This reduced model is formu-
lated as

f (x) =
m̃−
j=1

ũjk(x, Ãj)+ b. (3)

In contrast to conventional SVMs, RSVM replaces the fully dense
square kernel matrix K(A, A) with a small rectangular kernel
matrix K(A, Ã), which is used in the nonlinear SVM formulation to
avoid the above-mentioned computational difficulty. In the second
step, RSVM determines the best coefficients ũj and b in Eq. (3)
by solving the unconstrained minimization problem. It considers
the entire data set, so the separating surface (3) will adapt to all
the data. Hence, even though RSVM only uses a small portion of
the kernel bases, it can still retain most of the relevant pattern
information in the entire training set. A statistical theory that
supports RSVM is discussed in Lee and Huang (2007).

Next, we discuss the roles of the reduced sets as different
views in our multi-view algorithm. Ideally, to be effective as a

3 We give only a brief description of RSVM. Please refer to (Lee & Mangasarian,
2001a) for all the details.
4 It includes both of the labeled and unlabeled data in SSL. Also, no class

information is necessary for this construction.
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set of kernel bases, the selected kernel functions should not be
‘‘too similar’’ to each other; or, more rigorously, there should
be ‘‘some degree’’ of linear independence between them. For a
regular supervised learning problem, a reduced set with a higher
degree of linear independence between its elements ensures a
better classification result. Similarly, when more than one view is
involved in an SSL problem, we prefer a view not to be ‘‘similar’’
to another view. In this work, given a reduced set, we can use it
as a single view; or we select a subset of the whole set as a single
view and the whole reduced set is separated into a few different
views.5 Based on this design, we select views (or a few subsets of a
reduced set) with as much linear independence between them as
possible. The views with more linear independence are less likely
to have a uniform predicted result; therefore, they give a result of
high confidence when they agree.

We choose a reduced set with dissimilar reduced points. By
doing that,we ensure all the reduced sets are also dissimilar to each
other. There are various algorithms for selecting a representative
reduced setwith dissimilar elements, e.g., those proposed in Chien,
Chang, and Lee (2010) and Lee et al. (2003). In our SSL application,
based on the result of IRSVM (Lee et al., 2003), we obtain a set of
multi-view partners or reduced kernel matrices that are linearly
independent of each other. Note that our view selection (reduced
set building) procedure considers both labeled and unlabeled data
points. It is different from the design of tri-training, where only
labeled data is considered during the sampling process and the
sampled sets are used for generating the initial classifiers. By
including unlabeled data in the view selection procedure, we
expect the performance of our method to be superior to that of tri-
training.When labeled set is in a limited size, the proposedmethod
should give a more stable result than that of tri-training. The
experiment results, reported in Section 4, support our intuition.

3.2. Incremental RSVM algorithm

As mentioned above, the nonlinear RSVM classifier is a linear
combination of the basis functions {1} ∪ {k(·, Ã1), k(·, Ã2), . . . ,

k(·, Ãm̃)}. The reduced set is more representative if there is a
high degree of dissimilarity among its. Based on the intuition,
the incremental reduced support vector machine (IRSVM) was
proposed in Lee et al. (2003). We adopt the IRSVM algorithm, an
incremental forward selection style algorithm, to generate various
views for our 2T1S algorithm. It sequentially adds a kernel function
to the current basis function set onlywhen the function is dissimilar
to the current set.

The method starts with a very small reduced set Ã, typically a
size of two. A new data point Ai will only be added to the current
reduced set when the extra information carried in the vector
K(A, Ai)with respect to the column space of K(A, Ã) is greater than
a certain positive threshold δ > 0. This can be achieved by solving
a least squares problem, which is defined by

min
β∈Rm̃

K̃β − K(A, Ai)

2

2
, (4)

where β ∈ Rm̃ is a free vector variable; K̃ = K(A, Ã) ∈ Rm×m̃ is
the reduced kernel matrix generated by the current reduced set;
and K̃β ∈ Rm is a linear combination of the functions {K(A, Ãj)}

m̃
j=1

that represents the column space of K(A, Ã). According to the
first order optimality condition (Mangasarian, 1994), finding the
optimal solution β∗ of the unconstrained minimization problem
in (4) is equivalent to solving a system of normal equations:

K̃ ′K̃β = K̃ ′K(A, Ai). (5)
If the columns of the rectangular kernel matrix generated by the
initial reduced set are linearly independent, the IRSVM algorithm

5 A subset of a reduced set of course can also be called another reduced set.

Algorithm 1: The IRSVM Algorithm
Input:
A training data matrix A ∈ Rm×n.

A threshold δ > 0.
Output:
A reduced set Ãfinal.

A discriminant model f (x).

1 Randomly select a very small subset matrix Ã0 ∈ Rm̃×n from A, say
m̃ = 2, as an initial reduced set.

2 Generate the reduced kernel matrix K(A, Ã0).
3 Ãnew ← Ã0.
4 repeat
5 Choose a point Ai ∈ A \ Ãnew

6 ri ← ‖K(A, Ãnew)β∗ − K(A, Ai)‖2
7 if ri > δ then
8 Ãnew ← Ãnew ∪ Ai
9 end

10 until no more point Ai could be added into Ãnew
11 Construct an RSVM classifier f (x) using the current reduced set

Ãnew .
12 Ãfinal ← Ãnew .
13 Return Ãfinal and f (x).

will retain the independence property throughout the whole pro-
cess, so that the least squares problem (4) has a unique solutionβ∗,

β∗ = (K̃ ′K̃)−1K̃ ′K(A, Ai). (6)

The distance r from K(A, Ai) to the column space of K̃ is the square
root of the optimal value of (4). It is computed by

r =
K̃β∗ − K(A, Ai)


2
. (7)

The squared distance can be written in the form r2 = (I −
P)K(A, Ai), where P = K̃(K̃ ′K̃)−1K̃ ′ is the projection matrix of Rm

onto the column space of K̃ . Hence, r2 can be ameasure of the extra
information introduced byK(A, Ai)with respect to current reduced
kernel K(A, Ã). The steps of the IRSVM algorithm are detailed in
Algorithm 1. We describe the procedure of applying IRSVM in our
2T1S algorithm in the next subsection.

3.3. View selection

As mentioned in Section 3.1, an RSVM classifier can be repre-
sented as a linear combination of the selected kernel functions
for the corresponding randomly selected reduced set. To meet
our requirements, the selected kernel functions should have low
similarity, i.e., there should be high mutual (linear) independence
between them. Below, we describe our mechanism for generating
three views (or three subsets of reduced set),6 which will take
turns to play the roles of teacher and student in our 2T1S SSL
algorithm. The choice of views can be very flexible (Chien et al.,
2010; Lee et al., 2003). In this work, we use IRSVM (Lee et al.,
2003) to generate all three views because it guarantees dissimilar
basis functions (mentioned in Section 3.2) as the representatives.
We repeat the IRSVM procedure until some stopping criteria are
satisfied. In this paper, we stop the algorithm when we have
enough reduced points to form a candidate set. We then divide the
set into three parts, each of which plays the role of a view in the
2T1S algorithm.

The detailed procedure for generating the three reduced sets
is as follows. Suppose we want a view (a subset of reduced
set) whose size is equal to m̃, we repeat the IRSVM procedure

6 Again, a number of more than three views should be easy to generalize.



Author's personal copy

C.-C. Chang et al. / Neural Networks 25 (2012) 57–69 61

Fig. 1. The visualization of data points (a) before, and (b) after a consensus training, with a consensus level ε. Two axes represent the predictions from two models. The
upper-right and the bottom-left corners mean the agreement between the two models. A red square indicates positive data, a dark blue triangle indicates negative data, a
black dot indicates unlabeled data, a pink square indicates estimated positive data, and a light blue triangle indicates estimated negative data. We only label the unlabeled
data when both models agree the answer (in the upper-right and bottom-left corners). A larger ε implies a larger agreement between two models, but may introduce fewer
estimated data points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

until the number of reduced points is equal to 3m̃. Let Ãfinal
be the set of 3m̃ reduced points, which we split into three
subsets (views) with size m̃ through a round-robin (interleaving)
partition method called B̃, C̃ , and D̃. Based on Step 5 of the IRSVM
algorithm (Algorithm 1), it is clear that the three subsets of bases,
{k(·, B̃j)}

m̃
j=1, {k(·, C̃j)}

m̃
j=1, and {k(·, D̃j)}

m̃
j=1 are mutually exclusive.

Since the column spaces of K(A, B̃), K(A, C̃), and K(A, D̃), denoted
by CS(K(A, B̃)), CS(K(A, C̃)), and CS(K(A, D̃)), are spanned by
the above three mutually exclusive subsets of basis functions,
respectively. Thus these hypothesis spaces are orthogonal, and for
any two distinct views Vi, Vj ∈ {B̃, C̃, D̃}, we have

CS(K(A, Vi)) ∩ CS(K(A, Vj)) = {0}. (8)
Therefore, all the columns of the kernel matrices generated by
these three views are linearly independent of each other. Intu-
itively, views selected in this manner are likely to suggest labels
‘‘independently’’ for unlabeled data; hence, there is a high level of
confidence when they agree on an answer.

To satisfy the smoothness assumption (Chapelle et al., 2006)
addressed in many SSL work, we may also select a reduced set
with the k-means clustering algorithm (Hartigan & Wong, 1979;
MacQueen, 1967) heuristically, since we assume that neighboring
points in a high-density region are likely to have identical labels.
In this sense, it is interesting to construct one view by using cluster
centroids as the representative subset of the entire data set. We can
select two views from IRSVM and the centroid view from k-means,
as combining two different view selection methods for another
way of constructing the views. This method will also be studied
in our experiments.

3.4. The 2T1S algorithm = co-training+ consensus training

In this subsection, we introduce our proposed 2T1S algorithm
for iterative labeling and training. Our approach is inspired in part
by the well-known co-training method (Blum & Mitchell, 1998)
for SSL. The co-training method can help us to teach other views
to label the unlabeled data, if the two views are not very similar
to each other. In addition, more views can help us obtain a better
estimation result. That is, we will have more confidence if more
views are provided for relatively ‘‘independent’’ predictions. This
is called consensus training. We combine these two methods, co-
training and consensus training, to form our 2T1S algorithm. In the
labeling step, two teachers based on two views are consulted to
find a confident result, which is used to label, i.e., to teach the third
view (the student) to guess the labels of the unlabeled data. This
step is performed on each teachers–student combination. At the
end of the process, we have the guessed label information formany
of the unlabeled data. We can be a little conservative about the

labeling for the unlabeled data by choosing a positive ‘‘confidence’’
value ε > 0, which is called the consensus level. That is, we pre-
fer the predicted result to be at least away from the ‘‘twilight area’’
between ε and −ε (Fig. 1). In each step of building the consensus,
the value of ε might be decreased by some rate, such as 0.9, when
there is no point reaching a consensus and we still need more es-
timated labeled points for training. We repeat the ‘‘teaching’’ step
until the student classifier cannot ‘‘learn’’ any more from the two
teacher classifiers. That is, we repeat the above procedure to label
the unlabeled data until the labeling procedure makes no more, or
very few, changes. We then use all the labeled data (both the orig-
inal labeled data and the estimated labeled data) to build the final
classifier, which is used for making predictions on the unseen data.
We describe our 2T1S algorithm formally in Algorithm 2.

Remark. Below, we summarize the main points discussed in this
section, and explain the major differences between our approach
and other SSL methods.

1. The whole process of the proposed method, 2T1S, works on
a represented kernel feature space rather than in the input
space. Different from other multi-view methods, the views
in 2T1S are defined as subsets of data points rather than
subsets of attributes. Comparedwith othermulti-viewmethods
assume that the views are conditionally independent, we
prefer different views to be more linearly independent from
each other. Hence, we adopt the IRSVM algorithm to select
a representative reduced set with dissimilar elements and
partition it into three reduced subsets, which play the role of
views. Based on the RSVM formulation, the reduced set is used
to generate a smaller rectangular kernel matrix to replace the
full kernel matrix. The linear independence between pairs of
rectangular kernel matrices in the represented kernel feature
space is treated as the degree of dissimilarity between different
reduced sets.

2. SSL is especially interesting when the unlabeled part is much
larger than the labeled part. This is the case when we cannot
afford the additional expense of labeling unlabeled data. On
the other hand, RSVM is also useful when the amount of
data is large. As noted in Lee and Huang (2007) and Lee and
Mangasarian (2001a), the reduced set dramatically reduces the
amount of SVM computation, without much loss of accuracy
from the prediction based on the full matrix. This implies that
our approach should be even more effective when a larger data set
or unlabeled data set is involved.

3. When we generate a reduced set, the label information is not
necessary. Hence, we select the reduced sets from the entire
data set (both labeled and unlabeled data), and only use the
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Algorithm 2: The 2T1S Algorithm
Input:
Initial labeled data DL={(xi, yi)}ℓi=1, x

i
∈ Rn, yi ∈ {−1, 1}.

Initial unlabeled data DU={(xi)}m=ℓ+u
i=ℓ+1 , xi ∈ Rn.

Initial classifiers f1(x), f2(x), f3(x).

A consensus level 0 ≤ ε ≤ 1.
Output:
The final discriminant model f (x).

1 DLi ← DL, i = 1, . . . , 3.
2 iter ← 1.
3 D

(0)
L ← DL.

4 repeat
5 for i← 1 to 3 do
6 u← |DU |

7 for j← 1 to u do
8 t1 ← mod(i− 1, 3)+ 1
9 t2 ← mod(i, 3)+ 1

10 s← mod(i+ 1, 3)+ 1
11 if (ft1 (x

j) ≥ ε and ft2 (x
j) ≥ ε) or

12 (ft1 (x
j) ≤ −ε and ft2 (x

j) ≤ −ε)
13 then
14 DLs ← DLs ∪ xj

15 DL ← DL ∪ xj

16 DU ← DU \ xj

17 end
18 end
19 Retrain the classifier fs(x) with DLs .
20 end
21 D

(iter)
L ← DL.

22 iter ← iter + 1.
23 until D

(iter)
L = D

(iter−1)
L

24 Construct an RSVM classifier f (x) with the final labeled data set DL.
25 Return f (x).

labeled part to confirm the effectiveness of the function built
from the reduced set basis.

Our novel approach combines the RSVM and the IRSVM
algorithms for co-training and consensus training. In the next
section, we discuss the experiments, followed by some discussion.

4. Experiment results

To compare the performance of the 2T1S algorithm with other
SSL approaches, we test it on two synthetic data sets and nine
publicly available data sets (Asuncion & Newman, 2007). Table 1
summarizes the statistics of the data sets. While most of the
data sets are for regular supervised learning, in each data set, we
choose part of the labeled data to hide the label information to
obtain unlabeled data. We study the performance with different
percentages of labeled data with their labels kept for semi-
supervised training.

As mentioned in the previous section, we use the IRSVM (Lee
et al., 2003) procedure in our experiments to generate three views
for our teachers–student combination. As an alternative, we also
select two views derived by IRSVM, and one view (the cluster
centroids) obtained from the k-means clustering result in the 2T1S
algorithm. The sizes of view (measured in number of data points)
used in all the experiments are also summarized in Table 1. We
use Gaussian kernel functions for RSVM and IRSVM in all the
experiments. The initial value of ε, i.e., the margin in RSVM, is set
at 1. Recall that we reduce the value of ε by 0.9 when the existing
unlabeled data cannot be labeled any further. Besides, we adopt
the nested uniform design (UD) model selection method (Huang,
Lee, Lin, & Huang, 2007) to select the penalty parameter C and the
Gaussian kernel width parameter µ for RSVM.

Table 1
The statistics of the data sets used in the experiments.

Data set description

Data set Instance Feature View size (in data points)

Five-group 250 2 25
Checkerboard 1000 2 50
Tic-tac-toe 958 9 60
Vote 435 16 40
Wdbc 569 30 60
Hypothyroid 3163 25 70
Ionosphere 351 34 35
Australian 690 14 50
Pima Indians 768 8 50
German 1000 24 70
BUPA Liver 345 6 35

Data points

–3
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0

1

2

3

–3 –2 –1 0 1 2 3

Fig. 2. The distribution of a synthetic five-group data set. Among them, the top
cluster and the middle cluster are relatively closer to each other.

In the following evaluation, we use the terms training set
accuracy and transductive accuracy interchangeably to denote
the classification accuracy on the training set, which consists of
the estimated labeled examples from the unlabeled set DU and
the original given labeled examples from DL (class information
included). The term labeled set accuracy denotes the classification
accuracy on the original given labeled set DL, and test set accuracy
or inductive accuracy denotes the classification accuracy on the
fresh test set, which was not seen before the training commenced.

We conducted three sets of experiments in our evaluation.
The first set evaluated our algorithm’s performance on some
synthetic data sets. It is also used to visually demonstrate the
effectiveness of the proposed 2T1S as a technique for SSL. The
second set assessed the algorithm’s performance on the real-
world data sets mentioned earlier; and the third set compared our
method’s performance with that of other SSL methods, such as the
co-training algorithm and the tri-training algorithm. The results
demonstrate that, in terms of prediction power, our method is
superior to the compared methods on many real-world data sets.

4.1. Five-group data set

For the reason of visualizing the effect of our method on
transductive ability, we first tested our 2T1S algorithm on a five-
group synthetic data set. It is comprised of five clusters and there
are 50 points in each cluster, as shown in Fig. 2. As we can
see, most data groups have clear boundaries except between the
top and the middle groups. In Fig. 3(a1), the amount of labeled
data is very limited, identified by two red squares and two blue
triangles that are located in separate clusters. After performing SSL,
we obtain the result shown in Fig. 3(b1). The result agrees with
our expectation, accurately predicting the labels for all unlabeled



Author's personal copy

C.-C. Chang et al. / Neural Networks 25 (2012) 57–69 63

Unlabeled data
Positive data
Negative data

Positive data
Negative data
Decision boundary

Unlabeled data
Positive data
Negative data

Positive data
Negative data
Decision boundary

–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3

a1 b1

b2a2

Fig. 3. The synthetic data set used to demonstrate the effectiveness of our method for SSL. We assume that there are only very limited labeled data and each located in a
somewhat separate cluster. (a1) and (a2) are two input data sets and (b1) and (b2) are their labeling result respectively. We observe that the decision boundaries tend to go
through the low-density areas between groups.

a b

Fig. 4. (a) The 1000-point training data set in R2 distributed on sixteen black and white squares of a checkerboard. The positive points are denoted by red hollow squares
and the negative points are denoted by blue triangles. (b) The prediction result from the supervised RSVM, given full (100%) label information. The trial is run 30 times and it
shows the best test accuracy of 98.05% on a 39601-point test set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

data points. We conducted another experiment on the input with
different choices of labeled sets (Fig. 3(a2)), which also yields a
perfect classification result (100%), as shown in Fig. 3(b2). The
proposed algorithm is capable of identifying appropriate labels for
all the data. Clearly, different initial labeled points will produce
different decision boundaries. More importantly, we observe that
the decision boundaries tend to go through the low-density areas
between groups. That is similar to the results obtained by most
SSL methods. It is also worth knowing that the points of two

clusters, which have the ‘‘closest relationship’’, always have the
same label.

4.2. Checkerboard data set

To further assess the performance of the 2T1S algorithm on
inductive ability, we tested it on another synthetic data set, namely,
the checkerboard data set (Ho & Kleinberg, 1996; Kaufman, 1999)
shown in Fig. 4(a). The data set consists of 1000 points randomly
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Fig. 5. The comparison results of the average test accuracy between 2T1S and the
pure supervised learning schemewhile using the same percentage of labeled points
as training set after a series of 30 trials on a 39601-point test set.

distributed in an R2, 4 × 4 checkerboard. Fig. 4(b) shows the
prediction result from the supervised RSVM, given full (100%) label
information.

In the first experiment, we randomly selected 20%, 30%, 40%, or
50% from the data set as original labeled data points and treated
the remainder as unlabeled points; then, we performed 2T1S given
all data (labeled and unlabeled parts), and the pure supervised
learning scheme given only the labeled data. The above serieswere
run 30 trials to obtain average results.

We compared the performance of 2T1S with that of the pure
supervised learning scheme, RSVM on the same sized reduced set.
The results are shown in Fig. 5. According to the results, given
different percentages of labeled data, the classifiers generated by

2T1S always have better average test accuracy than the classifiers
built by the pure supervised learning scheme with the same
labeled data as training set. Here we just illustrate the case where
only 30% of the data are labeled, as shown in Fig. 6(a). Fig. 6(b) and
Fig. 6(c) show that the unlabeled data points are helpful. Fig. 6(b)
shows a poor pattern that approximates a checkerboard obtained
by the pure supervised RSVM classifier when the input is 30% of
points from the entire training set. The best test set accuracy of
this classifier is 93.60% on a test set of 39601 points.7 In contrast,
our 2T1S method yields a more accurate representation of the
checkerboard depicted in Fig. 6(c), with a best accuracy rate of
97.10% on the same test set. It is very close to the prediction
accuracy of 98.05% from supervised RSVM with all the training
data available, as shown in Fig. 4(b). Based on the results, we
have reason to believe that the estimated label information for the
unlabeled points can be used in the training process to construct
a nonlinear RSVM classifier that yields better test accuracy than
those constructed without using unlabeled data.

Moreover, given the same labeled data, we claim that our
2T1S and the pure supervised learning scheme (without unlabeled
information) produce significantly different expected accuracy
on a new example. To verify our viewpoint, we ran the paired
t-test to compare the final classifier generated by 2T1S with the
classifier built by the pure supervised learning scheme given the
same labeled data. We first randomly selected 10%, 20%, 30%, 40%,
or 50% from the data set as original labeled data points and treated
the remainder as unlabeled points. Next, we performed 2T1S given
all data (labeled and unlabeled parts) and the pure supervised
learning scheme given only the labeled data. We ran the above

7 It is generated on the side for the evaluation.
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Fig. 6. The checkerboard result: (a) 30% of the points in the entire 1000-point training set, selected at random. The positive points are denoted by red hollow squares and
the negative points are denoted by blue triangles; (b) the result from the supervised RSVM, with the accuracy rate of 93.60% given only the labeled points, and (c) the result
of 2T1S given the same labeled set (the remaining points are unlabeled data), with the accuracy rate of 97.10%. The results are the best ones after a series of 30 trials on a
39601-point test set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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a b c
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Fig. 7. The comparison results of the average test accuracy between 2T1S and the pure supervised learning scheme using the same percentage of labeled points as training
set after a series of 30 ten-fold cross-validation trials on nine public data sets, (a) Tic-tac-toe (b) Vote (c) Wdbc (d) Hypothyroid (e) Ionosphere (f) Australian (g) Pima Indians
(h) German (i) BUPA Liver. There are three methods to compare with: 2T1S-I denotes the 2T1S with 3 IRSVM views; 2T1S-II denotes the 2T1S with 2 IRSVM views and 1
centroid view; and the last, SL denotes the pure supervised learning scheme using only the labeled data for training.

Table 2
The p-value of paired t-test on checkerboard data set that compares the 2T1S to
the pure supervised learning schemewith the same percentage of labeled points as
training set.

The p-value of paired t-test

Ratio of labeled points (%) p-value

10 7.6887e−03
20 1.9170e−02
30 2.0163e−02
40 2.7328e−02
50 4.8328e−02

series for 20 trials and obtained 20 test accuracy and the results
were used for a paired t-test. Table 2 shows the numerical results
and demonstrates that our method gives the result significantly
different from the one derived from the pure supervised learning
scheme.

4.3. UCI data sets

In the second set of experiments, we tested 2T1S on nine UCI
data sets (Asuncion & Newman, 2007). We ran ten-fold cross-
validation 30 times on each data set. To evaluate the performance
of 2T1S, we compare with that of the pure supervised learning
scheme under the same setting. For each fold, we randomly
selected 20%, 30%, 40%, or 50% of the data points from the training
set as labeled data and treated the remainder as unlabeled data.

Table 3
Ten-fold cross-validation results of the average test accuracy on nine public data
sets when we use the supervised RSVM generated by full training points.

Ten-fold test set accuracy± std (%)

Data set Accuracy

Tic-tac-toe 99.75± 0.20
Vote 95.34± 0.49
Wdbc 97.19± 0.25
Hypothyroid 98.08± 0.10
Ionosphere 94.16± 0.84
Australian 86.24± 0.47
Pima Indians 75.87± 0.76
German 77.13± 0.52
BUPA Liver 73.27± 0.80

We show the numerical results of 2T1S and the comparisons to
other supervised learning results from Tables 3–6, also in Fig. 7.
First, Table 3 shows the average test accuracy of the supervised
RSVM that uses all the labeled data points for training. Presumably,
it is the best accuracy that we can obtain from SSL methods.

Table 4 details the average training accuracy and the average
numbers of final labeled points for 2T1S, based on ten-fold cross-
validation. Note that 2T1S may not label all the unlabeled data due
to our conservative policy when there is a lack of confidence or
there is no consensus among the multi-view or two teachers. Even
so, the numerical results show that our approach could label most
of the unlabeled data with high accuracy. Based on the limited
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Table 4
Ten-fold cross-validation results of the average training accuracy and the average number of final labeled points on nine public data sets when we use the 2T1S algorithm.
The numbers in parentheses are the data sizes, copied from Table 1.

Ten-fold training set accuracy± std (%)

Ten-fold number of labeled points± std

Data set Method 20% 30% 40% 50%

Tic-tac-toe (958)

I 98.70± 0.27 98.99± 0.39 99.56± 0.37 99.72± 0.31
859.6± 1.20 859.2± 1.02 859.2± 0.81 859.1± 0.83

II 98.72± 0.29 99.03± 0.41 99.64± 0.33 99.75± 0.31
859.4± 1.16 859.2± 1.00 859.1± 1.11 859.6± 0.83

Vote (435)

I 95.73± 1.02 96.77± 0.56 97.36± 0.50 97.66± 0.43
386.4± 1.58 386.1± 1.34 385.9± 1.30 386.4± 1.08

II 96.07± 0.84 96.95± 0.66 97.46± 0.42 97.71± 0.41
386.2± 1.75 386.1± 1.40 385.8± 1.18 386.3± 0.98

Wdbc (569)

I 97.56± 0.66 97.97± 0.40 98.05± 0.33 98.35± 0.31
495.8± 4.28 496.3± 3.74 497.2± 3.64 498.3± 3.09

II 97.64± 0.54 97.97± 0.46 98.08± 0.35 98.40± 0.31
494.3± 3.84 496.7± 4.06 496.0± 2.59 497.1± 3.69

Hypothyroid (3163)

I 98.01± 0.25 98.19± 0.21 98.28± 0.18 98.41± 0.13
2838.7± 2.31 2837.9± 1.93 2838.3± 1.83 2838.1± 1.90

II 98.02± 0.25 98.20± 0.19 98.28± 0.17 98.39± 0.13
2839.2± 2.23 2837.9± 1.97 2837.8± 2.37 2838.4± 1.70

Ionosphere (351)

I 93.08± 1.25 94.43± 1.22 95.45± 0.61 96.24± 0.90
310.3± 1.47 310.2± 1.19 309.6± 1.64 310.0± 1.26

II 92.81± 2.00 94.80± 0.87 95.60± 0.77 96.40± 0.67
311.8± 1.63 311.5± 1.06 310.6± 1.55 310.5± 1.21

Australian (690)

I 87.22± 1.72 87.52± 1.50 87.57± 0.83 87.58± 0.79
565.8± 49.35 564.5± 40.93 576.2± 28.33 583.2± 18.64

II 86.93± 1.21 87.51± 1.16 87.44± 0.87 87.59± 0.72
575.2± 32.65 570.1± 35.71 579.8± 27.27 586.2± 13.45

Pima Indians (768)

I 76.00± 0.69 76.59± 0.87 77.05± 0.59 77.57± 0.44
682.7± 2.16 682.7± 1.66 682.4± 1.90 681.7± 1.77

II 75.70± 0.99 76.45± 0.55 77.13± 0.31 77.38± 0.42
684.9± 1.55 684.5± 1.54 684.2± 1.65 683.1± 2.21

German (1000)

I 74.68± 1.26 75.69± 1.06 76.56± 0.69 77.57± 0.60
893.4± 1.58 892.8± 2.29 891.3± 1.54 891.7± 2.36

II 74.35± 1.26 75.31± 1.16 76.42± 0.76 77.54± 0.58
892.9± 2.06 893.2± 1.74 892.0± 2.11 891.1± 1.89

BUPA Liver (345)

I 70.80± 1.59 72.50± 1.66 73.94± 1.01 74.58± 0.91
302.4± 2.23 301.9± 2.17 301.3± 1.55 302.1± 2.29

II 69.65± 2.60 71.81± 1.76 73.21± 0.98 74.41± 0.87
304.4± 2.14 303.9± 1.60 303.4± 1.43 302.7± 1.66

Method I: 2T1S with 3 IRSVM views.
Method II: 2T1S with 2 IRSVM views and 1 centroid view.

Table 5
The p-value of paired t-test on nine public data sets that compare the 2T1S to the pure supervised learning scheme with the same percentage of labeled points as training
set.

The p-value of paired t-test

Data set 10% 20% 30% 40% 50%

Tic-tac-toe 1.6110e−06 1.4752e−05 6.7880e−04 9.2723e−07 1.4781e−06
Vote 1.1628e−02 4.0239e−05 8.2673e−04 6.7592e−03 1.0047e−02
Wdbc 4.2084e−03 1.1409e−04 2.1328e−04 5.6431e−04 6.0704e−03
Hypothyroid 3.6649e−03 7.6264e−03 9.3122e−03 1.7328e−02 3.8069e−02
Ionosphere 1.1962e−07 1.2798e−06 2.3424e−05 3.6566e−04 1.2766e−03
Australian 4.3463e−03 6.8507e−03 1.0451e−02 2.8118e−02 4.2275e−02
Pima Indians 1.5813e−03 1.5267e−03 1.8858e−02 7.9130e−03 7.7174e−03
German 5.4718e−03 1.6562e−09 2.9461e−09 1.5230e−08 2.0123e−08
BUPA Liver 8.1846e−07 1.2703e−04 6.1119e−03 1.2014e−03 2.2617e−02

but informative estimated labeled data as well as the original
labeled data, we build the final classifier. The results show that
the final classifier from 2T1S has its test accuracy comparable
to the test accuracy from supervised learning using the entire
labeled set available for training. Note that the CPU times required
to implement 2T1S in this set of experiments are from 1.66 to
33.99 s. The results show that althoughourmethodneeds to retrain
iteratively, the time cost is still acceptable.

On the other hand, Fig. 7 demonstrates the comparison results
of average test accuracy between the 2T1S and the pure supervised
learning scheme using the same percentages of labeled data, but
without the unlabeled part. The test accuracy of the classifiers
built by 2T1S, with 20%, 30%, 40%, and 50% of the labeled data
points available for training (also with the unlabeled part) are
higher than the test accuracy of the pure supervised learning
classifiers using only the labeled data points. That shows that
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Table 6
The results of the labeled set accuracy from each individual view of the 2T1S algorithm on nine public data sets. In which, all views are selected from the IRSVM.

Labeled set accuracy% of supervised learning
with different views

⟨View1⟩ Accuracy 100%a

[View2] Accuracy
(View3) Accuracy

Data set 20% 30% 40% 50%

Tic-tac-toe
⟨100.0⟩ ⟨100.0⟩ ⟨100.0⟩ ⟨100.0⟩

100.0[100.0] [100.0] [100.0] [100.0]
[100.0] [100.0] [100.0] [100.0]

Vote
⟨100.0⟩ ⟨100.0⟩ ⟨100.0⟩ ⟨100.0⟩

96.30[100.0] [100.0] [99.43] [100.0]
(100.0) (99.24) (100.0) (99.08)

Wdbc
⟨100.0⟩ ⟨99.42⟩ ⟨99.12⟩ ⟨99.30⟩

97.53[99.13] [99.42] [98.68] [99.30]
(99.13) (98.84) (98.68) (98.60)

Hypothyroid
⟨99.53⟩ ⟨99.26⟩ ⟨98.89⟩ ⟨98.86⟩

98.46[99.37] [99.16] [98.97] [98.86]
(99.37) (99.16) (98.97) (98.67)

Ionosphere
⟨100.0⟩ ⟨99.06⟩ ⟨99.29⟩ ⟨98.30⟩

96.07[100.0] [100.0] [98.58] [97.73]
(100.0) (100.0) (97.87) (97.16)

Australian
⟨90.65⟩ ⟨91.83⟩ ⟨90.61⟩ ⟨89.60⟩

86.39[90.65] [91.35] [90.61] [88.44]
(91.37) (90.87) (87.00) (89.02)

Pima Indians
⟨85.71⟩ ⟨83.12⟩ ⟨81.82⟩ ⟨83.07⟩

77.36[85.06] [82.25] [81.82] [82.03]
(84.42) (81.39) (81.49) (80.47)

German
⟨86.50⟩ ⟨84.33⟩ ⟨83.25⟩ ⟨81.40⟩

79.62[84.50] [84.00] [84.00] [81.80]
(86.00) (85.67) (83.00) (81.20)

BUPA Liver
⟨84.06⟩ ⟨79.81⟩ ⟨78.99⟩ ⟨78.61⟩

76.59[81.16] [81.73] [80.43] [79.19]
(82.61) (80.77) (78.99) (79.19)

a 100% means performing the RSVM with entire training labeled set.

the proposed 2T1S does take advantage of using the unlabeled
data information.

Next, we ran the paired t-test to compare the final classifier
generated by 2T1S with the classifier built by the supervised
learning given the same labeled data (but without the unlabeled
part). For each approach and each experiment, we first performed
ten-fold cross-validation 20 times, then used these 20 average
test accuracy to examine the paired t-test. The numerical results
are shown in Table 5. These results demonstrate that our method
is significant different from the pure supervised learning scheme
with only labeled data.

It would be interesting to check if one view in 2T1S would be
sufficient to learn a good classifier. The prediction power of each
view is shown in Table 6. We compare the classifiers generated by
different views with the classifier built by the entire data set. In
this test, all views are selected from the IRSVM. The numerical results
show that the classifiers constructed by different views have
similar labeled set accuracy to that of the classifier based on the
entire labeled set. In other words, the selected views are sufficient
to learn a classifier. In our design, two teachers decide the label,
and the extra labeled result should provide useful information for
meaningful retraining.

4.4. Comparison of 2T1S with co-training and tri-training algorithms

In the third set of experiments, we compared 2T1S with co-
training and tri-training algorithms (Zhou & Li, 2005) on nine
UCI data sets (Asuncion & Newman, 2007). We adopted the
experimental procedure described in Zhou and Li (2005). First, we
randomly selected 25% of the data points in the data set as the test
set and treated the remaining 75% as the training set. Then, we
randomly selected 20%, 40%, 60%, or 80% of the data points in the

training set as labeled data and treated the remainder as unlabeled
data. We applied the 2T1S algorithm three times for each ratio
of labeled data points in order to train data points to obtain the
average performance.

Fig. 8 demonstrates the comparison results of average test
accuracy among the 2T1S, co-training, and tri-training algorithms.8
Weonly show the best results from the co-training and tri-training
eachwith J4.8, BP neural networks, andNaïve Bayes as base learner
in turn. The results show that, for most of the data sets, our RSVM
based 2T1S algorithm can predict the test set with higher accuracy
than those from either co-training or tri-training.

5. Conclusion

We have proposed an RSVM based 2T1S algorithm for semi-
supervised learning. Considering the limited and expensive labeled
data and the massive but cheaper unlabeled data simultaneously,
the proposed 2T1S method can achieve high accuracy rates on
both transductive learning (measured by training accuracy) and
inductive learning (measuredby test accuracy). The 2T1S algorithm
is built on a framework of RSVM and IRSVM. The reduced set is
used to build the views in the view selection process. Unlike other
multi-view methods, 2T1S selects views in the represented kernel
feature space rather than in the input space. Moreover, instead of
requiring conditional independence between views, our algorithm
finds views that are linearly independent of each other. As a result,
the predictions based on different views can have the result with
high confidence by independent judgments.

8 The numerical results for the co-training and tri-training algorithms are quoted
from Zhou and Li (2005).
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Fig. 8. The comparison results of the average test accuracy among the 2T1S, co-training, and tri-training algorithms on nine publicly available data sets, using 20%, 40%, 60%,
and 80% of the training set as labeled data: (a) Tic-tac-toe (b) Vote (c) Wdbc (d) Hypothyroid (e) Ionosphere (f) Australian (g) Pima Indians (h) German (i) BUPA Liver. Four
methods discussed here: 2T1S-I: the one from 2T1S with 3 IRSVM views; 2T1S-II: the one from 2T1S with 2 IRSVM views and 1 centroid view; CO-tr: the best results from
the co-training with J4.8, BP neural networks, and Naïve Bayes as base learner in turn; TRI-tr: the best results from the tri-training with J4.8, BP neural networks, and Naïve
Bayes as base learner in turn.

As a multi-view approach, our method combines the concepts
of co-training and consensus training. Co-training helps us label
unlabeled data, while consensus training gives us sufficient
confidence in the labeling process. We use two teachers for
consensus training and one student as the co-training partner.
The 2T1S algorithm alternately labels the unlabeled data based on
classifiers on hold and builds the classifiers based on the original
labeled data, and the guessed labeled data obtained from previous
classification result.

We evaluated the performance of 2T1S on some synthesized
and real-world data sets. The numerical results show that the
algorithm uses only a small portion of the labeled data for
training, yet it achieves comparable cross-validation accuracy to
the algorithm that uses all the labeled data points. We also
compared 2T1S to the co-training and the tri-training algorithms,
on nine UCI data sets. The experiment results show that, on most
of the data sets, 2T1S outperforms the other two SSL methods.
Therefore, we expect that the 2T1S algorithm can receive widely
attentions from researchers in the SSL learning community.
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